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VAN VU

Grant/Contract Title: RANDOM MATRICES, COMBINATORICS NUMERICAL LIN-
EAR ALGEBRA AND COMPLEX NETWORKS

Grant/Contract Number: FA9550-09-1-0167

1. Condition number: Goldstine-von Neumann problem and
Edelman-Spielman-Teng conjecture

Definition 1.1. For an n× n matrix A, the condition number κ(A) is defined as

κ(M) := ‖A‖‖A−1‖

where ‖‖ denotes the operator norm. (If A is not invertible, set κ(A) =∞.)

Another, and more convenient, way to write κ(M) is

κ(M) = σ1(M)/σn(M)

where σ1 ≥ · · · ≥ σn(M) are the singular values of M . We will use this definition in the rest
of the discussion.

The condition number is one of the most important parameters in numerical linear algebra,
as it plays a crucial role in running time and accuracy of most linear algebraic algorithms
(see, e.g., [1]). As well known, linear algebraic algorithms are of fundamental importance in
the study of complex networks, or large data sets in general.

In practice, the smaller the condition number is, the better. Matrices with small condition
number (polynomial in n, say) are called well-conditioned while ones with large condition
number (super polynomial in n) are called ill-conditioned.

The problem of estimating the condition number of a random matrix was first posed by
Goldstine and von Neumann [15, 16], who tried to analyze the performance of one of the very
first computers on large matrices in the 1940s.

Let us consider the condition number of a random matrix Mn. For convenience, we assume
that the entries of Mn are iid random variables with mean 0 and variance 1. This assumption
can be weakened considerably, but notice that it already covers the gaussian model and also
the most important discrete model, the Bernoulli (or Rademacher) model (where the entries
independently take values ±1 with probability half).
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2 VAN VU

It is well-known that if we assume furthermore that the entries have light tail (for a more
specific statement, see [24]), then the largest singular value σ1, is strongly concentrated
around 2

√
n. Since

κ(M) = σ1(M)/σn(M),

the problem reduces to the study of the least singular value σn(M).

When the entries of M are standard gaussian, the distribution of σn was computed by
Edelman [13], confirming the prediction of Goldstine and von Neumann.

Theorem 1.2 (Limiting distributions for gaussian models). For any fixed t ≥ 0, we have

P(nσn(Mn(gR))2 ≤ t) =

∫ t

0

1 +
√
x

2
√
x
e−(x/2+

√
x) dx+ o(1) (1)

Edelman’s proof used the integration method and relied heavily on concrete formula of the
joint distribution of the eigenvalues of random gaussian matrix and thus can not be extended
to other cases. On the other hand, both Edelman and Spielman and Teng [27] made an
explicit conjecture that the distribution of σn is the same in the Bernoulli case.

To illustrate the difficulty of the problem, let us mention that it is already quite non-trivial to
show that the least singular value of a random Bernoulli matrix is, with probability tending
to one as n tends to infinity, positive. This was done by Komlós in 1967 [19, 20], using
combinatorial arguments.

The Pi’s first major finding is the confirmation of Edelman-Spielman-Teng conjecture. In
fact, he and T. Tao discovered that the limiting distribution of the least singular value (and
as a consequence, that of the condition number) of a random matrix is universal, i.e., does
not depend on the distribution of the entries.

Theorem 1.3 (Universality for the least singular value). [30] Let ξ be a random variable with
mean 0 and variance 1 and suppose E|ξ|C0 <∞ for some sufficiently large absolute constant
C0. Let Mn be a random matrix with entries being iid copies of ξ. Then for all t > 0, we
have

P(nσn(Mn)2 ≤ t) =

∫ t

0

1 +
√
x

2
√
x
e−(x/2+

√
x) dx+O(n−c) (2)

The implied constants in the O(.) notation depend on E|ξ|C0 but are uniform in t.

The next figure shows an empirical demonstration of Theorem 1.3 for Bernoulli and for
gaussian distributions.
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Figure 1. Plotted above is the curve P(
√
nσn(Mn(ξ)) ≤ x), based on data

from 1000 randomly generated matrices with n = 100. The dotted curve
was generated with ξ a random Bernoulli variable, taking the values +1 and
−1 each with probability 1/2; and the dashed curve was generated with ξ a
gaussian normal random variable. Note that the two curves are already close
together in spite of the relatively coarse data.

Theorem 1.3 also holds in the complex case. This this case the distribution of the least
singular value of a (complex) gaussian matrix is also available in Edelman’s paper [13].

2. Condition number of randomly perturbed matrices

Now we discuss the general problem of determining the condition number of A+Mn, where
A can be an arbitrary (deterministic) matrix. This problem is of importance in the study of
large data sets with random perturbation. In particular, it played a crucial role in the theory
of smoothed analysis introduced by Spielman and Teng [27].

In order to bound the condition number κ(A + Mn) from above, we want to bound both
‖A+Mn‖ and ‖(A+Mn)−1‖. Bounding ‖A+Mn‖ is easy. In fact, we expect that in most
cases the noise does not change ‖A‖ significantly. By the triangle inequality

‖A‖ − ‖Mn‖ ≤ ‖A+Mn‖ ≤ ‖A‖+ ‖Mn‖.



4 VAN VU

On the other hand, in most models of random matrices, one can show that ‖Mn‖ = O(
√
n)

with very high probability, so if ‖A‖ = nO(1), then ‖A + Mn‖, with high probability, is
polynomially bounded. In practice, high-dimensional matrices usually have not too large
entries (compared to their sizes), so this assumption about A is almost always satisfied, and
we are going to assume it through our discussion.

The problem is thus to bound the norm of the inverse ‖(A+Mn)−1‖. Spielman, Sankar and
Teng [27, 26] proved the following result for the case when Mn is gaussian (see also [3] for an
extension)

Theorem 2.1. Let A be an arbitrary n by n matrix and Mn be a random matrix with iid
gaussian real entries. Then for any x > 0,

P(‖(A+Mn)−1‖ ≥ x
√
n) ≤ 1.823x.

One of the main goal of the proposal was to find an analogue of this result for general
random matrices. The problem was posed by Spielman several years ago [27].

The case A = 0 was addressed by Rudelson and Vershyin [24], but their proof does not
extend to general A. It is not a coincidence, as it has turned out that there is a sharp
distinction between the two cases. While in the base case when A = 0, the above theorem
and [24] showed that the behavior of σn(Mn) does not depend on the distribution of the
entries of Mn (as far as they have mean 0 and variance 1 and bounded moments). On the
other hand, when A is not zero, Tao and the PI found an example of A such that the behavior
of ‖(A + Mn)−1‖ when Mn is random Bernoulli does not satisfy the bound in Theorem 2.1.
This means that one cannot expect Theorem 2.1 holds for non-gaussian variables and more
importantly that A should play a role in the inequality.

With this observation in mind, Tao and the PI were able to prove the following theorem [37]

Theorem 2.2. Let x be a random variable with mean zero and bounded second moment,
and let γ1/2, C0 be constants. Then there is a constant c depending on x, γ, C such that the
following holds. Let Mn be the random matrix of size n whose entries are iid copies of x, A
be a deterministic matrix satisfying ‖A‖ ≤ nγ and let Mn := M +Nn. Then

P(sn(A+Mn) ≤ n−2(C+1)γ) ≤ c(n−C+o(1) + P(‖Nn‖ ≥ nγ).

This theorem sharpens in extends several existing results, such as those of Tao and the PI
[28, 29]) and Rudelson and Vershynin [24].

3. Computing eigenvectors with noise

An important problem that appears in various areas of applied mathematics (in particular
statistics, computer science and numerical analysis) is to compute the first few singular
vectors of a large matrix. Among others, this problem lies at the heart of PCA (Principal
Component Analysis), which has a very wide range of applications (for many examples, see
[18, 21] and the references therein).
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The basic setting of the problem is as follows:

Problem 3.1. For a matrix A of size n × n with singular values σ1 ≥ · · · ≥ σn ≥ 0, let
v1, . . . , vn be the corresponding (unit) singular vectors. Compute v1, . . . , vk, for some k ≤ n.

Typically n is large and k is relatively small. As a matter of fact, in many applications k
is a constant independent of n. For example, to obtain a visualization of a large set of data,
one often sets k = 2 or 3. The assumption that A is a square matrix is for convenience and
our analysis can be carried out with nominal modification for rectangular matrices.

The matrix A, which represents some sort of data, is often perturbed by random noise.
Thus, one typically works with A + Mn, where Mn, as usual, denotes a random matrix. A
natural and important problem is to estimate the influence of noise on the vectors v1, . . . , vk.
We denote by v′1, . . . , v

′
k the first k singular vectors of A+Mn.

For sake of presentation, we restrict ourselves to the case k = 1 (the first singular vector).
The following question is of importance

Question 3.2. When is v′1 a good approximation of v1 ?

A traditional way to measure the distance between two vectors v and v′ is to look at
sin∠(v, v′), where ∠(v, v′) is the angle between the vectors, taken in [0, π/2] (see [14]). (One
can also of course use ‖v − v′‖ but we choose to follow the literature.) To make the problem
more quantitative, let us fix a small parameter ε > 0, which represents a desired accuracy.
Our question now is to find a sufficient condition for the matrix A which guarantees that
sin∠(v1, v

′
1) ≤ ε. It has turned out that the key parameter to look at is the gap (or separation)

δ := σ1 − σ2,
between the first and second singular values of A. Classical results in numerical linear algebra
yield.

Theorem 3.3. (Wedin theorem) For any given ε > 0, if δ ≥ ‖E‖/ε, then

sin∠(v1, v
′
1) ≤ ε.

In the case when A and A+Mn are Hermitian, this statement is a special case of the famous
Davis-Kahan sin θ theorem. Wedin [40] extended Davis-Kahan theorem to non-Hermitian
matrices, resulting in a general theorem that contains Theorem 3.3 as a special case (see [14,
Chapter 8] for more discussion and history).

For most standard models of random matrices, ‖Mn‖ ≈ 2
√
n. So we have

Corollary 3.4. If δ ≥ 2
√
n/ε, then with probability 1− o(1)

sin∠(v1, v
′
1) ≤ ε.
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Low dimensional data and improved bounds.

In a large variety of problems, the data is of small dimension, namely, r := rankA� n (see
[12] and the references therein).

The PI and his students run experiments for extremal cases with r = O(1) and see a vast
improvement over the bound predicted in corollary 3.4.
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400 × 400 matrix of rank 2, with gap δ equals 8; this gap is much less than predicted by
Wedin’s bound. Indeed, we see that with probability close to 1, one can have ε ≈ 12o = 1

15π.

By Corollary 3.4, in order to obtain this accuracy, we need δ to be as large as 2
√

400× 15 =
600.
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1000× 1000 matrix of rank 2, with gap equals 10.

The PI discovered that the bound on δ depends on the real dimension r of the data, rather
than the size n. He was able to prove [39]

Theorem 3.5. For any positive constant ε there is a positive constant C = C(ε) such that
the following holds. Assume that A has rank r ≤ n.99 and n√

r logn
≤ σ1 and δ ≥ C

√
r log n.

Then with probability 1− o(1)
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sin∠(v1, v
′
1) ≤ ε. (3)

Given a desired accuracy ε (say, 1/100), this theorem means that when r is small, v′1
approximates v1 under much weaker assumption on the data matrix A, compared to Corollary
3.4.

4. Spectrum of random graphs

A popular way to model large complex networks is to use random graphs. Naturally, the
problem of understanding the spectrum of these graphs is of importance.

The most studied models of random graphs are Erdös-Rényi graph and random regular
graph (for definition and more information, see [2]). While these graphs are not yet a good
approximation for real-life complex networks,it has turned out that methods developed to
study them are very useful in the investigations of more practical models.

Let An be the adjacency matrix of the Erdös -Rényi random graph G(n, p); An is a random
symmetric n×n matrix whose upper triangular entries are independent identical distributed
(iid) copies of a real random variable ξ and diagonal entries are 0; ξ is a Bernoulli random
variable that takes values 1 with probability p and 0 with probability 1− p.

Eξ = p,Varξ = p(1− p) = σ2.

In 1950s, Wigner [41] discovered the famous semi-circle law for the limiting distribution of
the eigenvalues of random matrices (see next section). His proof extends, without difficulty,
to the adjacency matrix of G(n, p), given that np→∞ with n.

Theorem 4.1. For p = ω( 1
n), the empirical spectral distribution (ESD) of the matrix 1√

nσ
An

converges in distribution to the semicircle distribution which has a density ρsc(x) with support
on [−2, 2],

ρsc(x) :=
1

2π

√
4− x2.

If np = O(1), the semicircle law no longer holds. In this case, the graph almost surely has
Θ(n) isolated vertices, so in the limiting distribution, the point 0 has positive constant mass.

Let us now discuss random d-regular graph (denoted by Gn,d). The spectrum of Gn,d, was
considered by McKay [22] about 30 years ago. He proved that if d is fixed, and n→∞, then
the limiting density function is

fd(x) =


d
√

4(d−1)−x2
2π(d2−x2) , if |x| ≤ 2

√
d− 1;

0 otherwise.

This is usually referred to as the McKay or Kesten-McKay law.
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It is easy to verify that as d→∞, if we normalize the variable x by
√
d− 1, then the above

density converges to the semicircle distribution on [−2, 2]. In fact, a numerical simulation
shows the convergence is quite fast (see figure above)

It has been conjectured that Theorem 4.1 holds for Gn,d with d → ∞. Let A′n be the
adjacency matrix of Gn,d, and set

M ′n =
1√

d
n(1− d

n)
(A′n −

d

n
J).

Conjecture 4.2. If d → ∞ then the ESD of 1√
n
M ′n converges to the standard semicircle

distribution.

Nothing has been proved about this conjecture, until recently. In [11], Dumitriu and Pal

showed that the conjecture holds for d tending to infinity slowly, d = no(1). Their method
does not extend to larger d.

With students L. Tran and L. Wu, the PI were able to established Conjecture 4.2 in full
generality. Our method was very different from that of [11] and could be useful in the study
of more sophisticated model of random graphs, since it nicely handles a major difficulty that
the the edges in the graph are not totally independent (unlike the Erdös-Rényi case).

Theorem 4.3. If d tends to infinity with n, then the empirical spectral distribution of 1√
n
M ′n

converges in distribution to the semicircle distribution.

5. Local statistics of eigenvalues

One of the main goal of random matrix theory is to establish limiting distributions con-
cerning the local eigenvalue statistics. To simplify the presentation, we are going to focus on
Wigner Hermitian matrices, which are perhaps the most prominent model in the field.

Definition 5.1 (Wigner matrices). Let n be a large number. A Wigner Hermitian matrix
(of size n) is defined as a random Hermitian n×n matrix Mn with upper triangular complex
entries ζij := ξij +

√
−1τij (1 ≤ i < j ≤ n) and diagonal real entries ξii (1 ≤ i ≤ n) where
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• For 1 ≤ i < j ≤ n, ξij , τij are iid copies of a real random variable ξ with mean zero
and variance 1/2.

• For 1 ≤ i ≤ n, ξii are iid copies of a real random variable ξ̃ with mean zero and
variance 1.
• ξ, ξ̃ have exponential decay, i.e., there are constants C,C ′ such that P(|ξ| ≥ tC) ≤

exp(−t),P(|ξ̃| ≥ tC) ≤ exp(−t), for all t ≥ C ′.

We refer to ξ, ξ̃ as the atom distributions of Mn, and ξij , τij as the atom variables. We refer
to the matrix Wn := 1√

n
Mn as the coarse-scale normalized Wigner Hermitian matrix, and

An :=
√
nMn as the fine-scale normalized Wigner Hermitian matrix.

Example. (GUE) An important special case of a Wigner Hermitian matrix is the gaussian

unitary ensemble (GUE), in which ξ, ξ̃ are gaussian random variables with mean zero and
variance 1/2, 1 respectively. The coarse-scale normalization Wn is convenient for placing all
the eigenvalues in a bounded interval, while the fine-scale normalization An is convenient for
keeping the spacing between adjacent eigenvalues to be roughly of unit size.

Given an n× n Hermitian matrix A, we denote its n eigenvalues as

λ1(A) ≤ . . . ≤ λn(A),

and write λ(A) := (λ1(A), . . . , λn(A)).

The study of the eigenvalues λi(Wn) of (normalized) Wigner Hermitian matrices has been
one of the major topics of study in random matrix theory. The properties of these eigenvalues
are not only interesting in their own right, but also have been playing essential roles in many
other areas of mathematics, such as mathematical physics, probability, combinatorics, and
the theory of computing.

A cornerstone of this theory is the Wigner semicircular law. Denote by ρsc the semi-circle
density function with support on [−2, 2],

ρsc(x) :=

{
1
2π

√
4− x2, |x| ≤ 2

0, |x| > 2.
(4)

Theorem 5.2 (Semi-circular law). Let Mn be a Wigner Hermitian matrix. Then for any
real number x,

lim
n→∞

1

n
|{1 ≤ i ≤ n : λi(Wn) ≤ x}| =

∫ x

−2
ρsc(y) dy

in the sense of probability (and also in the almost sure sense, if the Mn are all minors of
the same infinite Wigner Hermitian matrix), where we use |I| to denote the cardinality of a
finite set I.

Remark 5.3. Wigner[41] proved this theorem for special ensembles. The general version above
is due to Pastur [25]. The semi-circular law in fact holds under substantially more general
hypotheses than those given in Definition 5.1, but we will not discuss this matter further
here. One consequence of Theorem 5.2 is that we expect most of the eigenvalues of Wn to lie
in the interval (−2 + ε, 2 + ε) for ε > 0 small; we shall thus informally refer to this region as
the bulk of the spectrum.
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Theorem 5.2 addressed the global behavior of the eigenvalues. The local properties are much
harder and their studies require much more sophisticated tools. Most of the precise theorems
have been obtained for the matrices with gaussian entries (GUE).

Notice that in Theorem 5.2, we only need to know the first two moments of the entries (the
mean and the variance) to determine the global distribution. Rather surprisingly, Tao and
the PI [33] discovered that the local distributions depend only on the first four moments.
This led to what we call the Four Moment Theorem.

Definition 5.4 (Matching moments). Let k ≥ 1. Two complex random variables ξ, ξ′ are
said to match to order k if one has E<(ξ)a=(ξ)b = E<(ξ′)a=(ξ′)b whenever a, b ≥ 0 are
integers such that a+ b ≤ k.

In the model case when the real and imaginary parts of ξ or of ξ′ are independent, the
matching moment condition simplifies to the assertion that E<(ξ)a = E<(ξ′)a and E=(ξ)b =
E=(ξ′)b for all 0 ≤ a, b ≤ k.

Theorem 5.5 (Four Moment Theorem for eigenvalues). Let c0 > 0 be a sufficiently small
constant. Let Mn = (ξij)1≤i,j≤n and M ′n = (ξ′ij)1≤i,j≤n be two Wigner matrices. Assume

furthermore that for any 1 ≤ i < j ≤ n, ξij and ξ′ij match to order 4 and for any 1 ≤ i ≤ n,

ξii and ξ′ii match to order 2. Set An :=
√
nMn and A′n :=

√
nM ′n, let 1 ≤ k ≤ nc0 be an

integer, and let G : Rk → R be a smooth function obeying the derivative bounds

|∇jG(x)| ≤ nc0 (5)

for all 0 ≤ j ≤ 5 and x ∈ Rk. Then for any 1 ≤ i1 < i2 · · · < ik ≤ n, and for n sufficiently
large we have

|E(G(λi1(An), . . . , λik(An)))−E(G(λi1(A′n), . . . , λik(A′n)))| ≤ n−c0 . (6)

One can use The Four Moment Theorem, combined with various recent results (in particular
those of Erdös et. al.; see [7]), to attack several long standing problems. For more discussions,
we refer to [7, 17, 33, 35, 36]).
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